Percolation structure in metallic glasses and liquids
نویسندگان
چکیده
The atomic-level structures of liquids and glasses are similar, obscuring any structural basis for the glass transition. To delineate structural differences between them, we characterized the atomic structures using the integrated radial distribution functions (RDF) from molecular dynamics (MD) simulations for several metallic liquids and glasses: Cu46Zr54, Ni80Al20, Ni33.3Zr66.7, and Pd82Si18. We find that the integrated RDF leads to cumulative coordination numbers (CN) that are similar for all four metallic glasses and for all four liquids, but are consistently different between the liquid and glass phases. We find that metallic liquids have a fractal dimension of df = 2.54 ± 0.06 from the center atom to the first coordination shell whereas the metallic glasses have df = 2.66 ± 0.04, which suggests the development of weak ordering during the glass transition. Beyond the second coordination shell, the CN indicates a dimension of d = 3 as for a crystal. Crossovers in dimension from df~2.54-2.66 to d = 3 between the first and second coordination shells imply an underlying percolation structure in metallic liquids and glasses.
منابع مشابه
On the source of plastic flow in metallic glasses: Concepts and models
We briefly review the state-of-the-art study on plastic flow in metallic glasses. Especially, we survey the features and behaviors, percolation, and response of the basic deformation units to the activation of stress and temperature, and various models and notions on microscopic flow in metallic glasses. The discussion, comments and perspective on possible unified notation, terminologies and mo...
متن کاملAtomic Dynamics in Metallic Liquids and Glasses
How atoms move in metallic glasses and liquids is an important question in discussing atomic transport, glass formation, structural relaxation and other properties of metallic glasses. While the concept of free-volume has long been used in describing atomic transport, computer simulations and isotope measurements have shown that atomic transport occurs by a much more collective process than ass...
متن کاملGeometric frustration of icosahedron in metallic glasses.
Icosahedral order has been suggested as the prevalent atomic motif of supercooled liquids and metallic glasses for more than half a century, because the icosahedron is highly close-packed but is difficult to grow, owing to structure frustration and the lack of translational periodicity. By means of angstrom-beam electron diffraction of single icosahedra, we report experimental observation of lo...
متن کاملOn the question of fractal packing structure in metallic glasses.
This work addresses the long-standing debate over fractal models of packing structure in metallic glasses (MGs). Through detailed fractal and percolation analyses of MG structures, derived from simulations spanning a range of compositions and quenching rates, we conclude that there is no fractal atomic-level structure associated with the packing of all atoms or solute-centered clusters. The res...
متن کاملFractal atomic-level percolation in metallic glasses.
Metallic glasses are metallic alloys that exhibit exotic material properties. They may have fractal structures at the atomic level, but a physical mechanism for their organization without ordering has not been identified. We demonstrated a crossover between fractal short-range (<2 atomic diameters) and homogeneous long-range structures using in situ x-ray diffraction, tomography, and molecular ...
متن کامل